커뮤니티

지표구현문의드립니다

프로필 이미지
잘하고프다
2023-09-06 17:36:01
933
글번호 172220
답변완료
아래 코드는 트레이딩뷰에 있는 지표중에 Relative Trend Index 라는 지표의 코드입니다. 혹시 시그널메이커로 지표의 구현이 가능할까요? // This work is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ // ? Zeiierman //@version=5 indicator('Relative Trend Index (RTI) by Zeiierman', shorttitle= "RTI", overlay=false, precision=0) // Inputs { trend_data_count = input.int(100, step=4, minval=10, title="Trend Length", inline = "RT", group="Relative Trend Index [RTI]", tooltip="This variable determines the number of data points used in the calculation. In short: A high value returns the long-term trend and a low value returns the short-term trend. If a user increases the 'Trend Length', the trend will take into account a larger number of data points. This makes the trends smoother and more resistant to sudden changes in the market, as they're based on a broader set of data. It also makes the trends slower to react to recent changes, as they're diluted by older data. On the other hand, if a user decreases the 'Trend Length', the trend will take into account fewer data points. This could make the trends more responsive to recent market changes, as they're based on a narrower set of data. It also makes the trends more susceptible to noise and rapid fluctuations, as each new piece of data has a greater impact.") trend_sensitivity_percentage = input.int(95, step=1,minval=50, maxval=98,title='Sensitivity????', inline = "RT1", group="Relative Trend Index [RTI]", tooltip="This variable determines the specific indices in the sorted trend arrays that are used for the upper and lower trend. It's used as a percentage of the 'Trend length'. If a user increases the 'Sensitivity', the trend will be based on higher and lower positions in the sorted arrays, respectively. This makes the trend less sensitive. Conversely, if a user decreases the 'Sensitivity', the trend will be based on positions closer to the middle of the sorted arrays. This makes the trend more sensitive.") signal_length = input.int(20, step=1,minval=1, maxval=200,title='Signal Length', inline = "", group="Signal Line", tooltip="Set the Ma period.") ob = input.float(80, step=1, minval=0, maxval=100, title="", inline = "obos", group="Overbought/Oversold", tooltip="") os = input.float(20,step=1, minval=0, maxval=100,title="", inline = "obos", group="Overbought/Oversold", tooltip="Set the OB/OS levels.") //~~~~~~~~~~~~~~~~~~~~~~~} // Relative Trend Index Calculation { upper_trend = close + ta.stdev(close, 2) lower_trend = close - ta.stdev(close, 2) upper_array = array.new(0) lower_array = array.new(0) for i = 0 to trend_data_count - 1 upper_array.push(upper_trend[i]) lower_array.push(lower_trend[i]) upper_array.sort() lower_array.sort() upper_index = math.round(trend_sensitivity_percentage / 100 * trend_data_count) - 1 lower_index = math.round((100 - trend_sensitivity_percentage) / 100 * trend_data_count) - 1 UpperTrend = upper_array.get(upper_index) LowerTrend = lower_array.get(lower_index) RelativeTrendIndex = ((close - LowerTrend) / (UpperTrend - LowerTrend))*100 //~~~~~~~~~~~~~~~~~~~~~~~} // Plots { MA_RelativeTrendIndex = ta.ema(RelativeTrendIndex,signal_length) RT = plot(RelativeTrendIndex, 'Relative Trend Index (RTI)', color=color.new(color.teal, 0)) plot(MA_RelativeTrendIndex, 'Ma Relative Trend Index', color=color.new(#00bcd4, 0)) //~~~~~~~~~~~~~~~~~~~~~~~} // Line plots { mid = hline(50, 'Mid', color=#606060, linestyle=hline.style_dashed) overbought = hline(ob, 'Overbought', color=#606060, linestyle=hline.style_dashed) oversold = hline(os, 'Oversold', color=#606060, linestyle=hline.style_dashed) //~~~~~~~~~~~~~~~~~~~~~~~} // BG Fill { fill(overbought, oversold, color=color.new(color.teal, 90), title='Background') //~~~~~~~~~~~~~~~~~~~~~~~} // Overbought/Oversold Gradient Fill { midLinePlot = plot(50, color = na, editable = false, display = display.none) fill(RT, midLinePlot, 100, ob, top_color = color.new(color.green, 0), bottom_color = color.new(color.green, 100), title = "Overbought Gradient Fill") fill(RT, midLinePlot, os, 0, top_color = color.new(color.red, 100), bottom_color = color.new(color.red, 0), title = "Oversold Gradient Fill") //~~~~~~~~~~~~~~~~~~~~~~~} //Alerts { RT_OB_Over = ta.crossover(RelativeTrendIndex,ob) RT_OB_Under = ta.crossunder(RelativeTrendIndex,ob) RT_OS_Over = ta.crossover(RelativeTrendIndex,os) RT_OS_Under = ta.crossunder(RelativeTrendIndex,os) RT_Mid_Over = ta.crossover(RelativeTrendIndex,50) RT_Mid_Under = ta.crossunder(RelativeTrendIndex,50) RT_MA_Over = ta.crossover(RelativeTrendIndex,MA_RelativeTrendIndex) RT_MA_Under = ta.crossunder(RelativeTrendIndex,MA_RelativeTrendIndex) alertcondition(RT_OB_Over, title = "RTI Crossover OB", message = "RTI Crossover OB") alertcondition(RT_OB_Under, title = "RTI Crossunder OB", message = "RTI Crossunder OB") alertcondition(RT_OS_Over, title = "RTI Crossover OS", message = "RTI Crossover OS") alertcondition(RT_OS_Under, title = "RTI Crossunder OS", message = "RTI Crossunder OS") alertcondition(RT_Mid_Over, title = "RTI Crossover 50", message = "RTI Crossover 50") alertcondition(RT_Mid_Under,title = "RTI Crossunder 50", message = "RTI Crossunder 50") alertcondition(RT_MA_Over, title = "RTI Crossover Ma", message = "RTI Crossover Ma") alertcondition(RT_MA_Under, title = "RTI Crossunder Ma", message = "RTI Crossunder Ma")
지표
답변 1
프로필 이미지

예스스탁 예스스탁 답변

2023-09-07 18:46:34

안녕하세요 예스스탁입니다. 타사 프로그램 언어로는 작성해 드리지 않습니다. 즐거운 하루되세요 > 잘하고프다 님이 쓴 글입니다. > 제목 : 지표구현문의드립니다 > 아래 코드는 트레이딩뷰에 있는 지표중에 Relative Trend Index 라는 지표의 코드입니다. 혹시 시그널메이커로 지표의 구현이 가능할까요? // This work is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ // ? Zeiierman //@version=5 indicator('Relative Trend Index (RTI) by Zeiierman', shorttitle= "RTI", overlay=false, precision=0) // Inputs { trend_data_count = input.int(100, step=4, minval=10, title="Trend Length", inline = "RT", group="Relative Trend Index [RTI]", tooltip="This variable determines the number of data points used in the calculation. In short: A high value returns the long-term trend and a low value returns the short-term trend. If a user increases the 'Trend Length', the trend will take into account a larger number of data points. This makes the trends smoother and more resistant to sudden changes in the market, as they're based on a broader set of data. It also makes the trends slower to react to recent changes, as they're diluted by older data. On the other hand, if a user decreases the 'Trend Length', the trend will take into account fewer data points. This could make the trends more responsive to recent market changes, as they're based on a narrower set of data. It also makes the trends more susceptible to noise and rapid fluctuations, as each new piece of data has a greater impact.") trend_sensitivity_percentage = input.int(95, step=1,minval=50, maxval=98,title='Sensitivity????', inline = "RT1", group="Relative Trend Index [RTI]", tooltip="This variable determines the specific indices in the sorted trend arrays that are used for the upper and lower trend. It's used as a percentage of the 'Trend length'. If a user increases the 'Sensitivity', the trend will be based on higher and lower positions in the sorted arrays, respectively. This makes the trend less sensitive. Conversely, if a user decreases the 'Sensitivity', the trend will be based on positions closer to the middle of the sorted arrays. This makes the trend more sensitive.") signal_length = input.int(20, step=1,minval=1, maxval=200,title='Signal Length', inline = "", group="Signal Line", tooltip="Set the Ma period.") ob = input.float(80, step=1, minval=0, maxval=100, title="", inline = "obos", group="Overbought/Oversold", tooltip="") os = input.float(20,step=1, minval=0, maxval=100,title="", inline = "obos", group="Overbought/Oversold", tooltip="Set the OB/OS levels.") //~~~~~~~~~~~~~~~~~~~~~~~} // Relative Trend Index Calculation { upper_trend = close + ta.stdev(close, 2) lower_trend = close - ta.stdev(close, 2) upper_array = array.new(0) lower_array = array.new(0) for i = 0 to trend_data_count - 1 upper_array.push(upper_trend[i]) lower_array.push(lower_trend[i]) upper_array.sort() lower_array.sort() upper_index = math.round(trend_sensitivity_percentage / 100 * trend_data_count) - 1 lower_index = math.round((100 - trend_sensitivity_percentage) / 100 * trend_data_count) - 1 UpperTrend = upper_array.get(upper_index) LowerTrend = lower_array.get(lower_index) RelativeTrendIndex = ((close - LowerTrend) / (UpperTrend - LowerTrend))*100 //~~~~~~~~~~~~~~~~~~~~~~~} // Plots { MA_RelativeTrendIndex = ta.ema(RelativeTrendIndex,signal_length) RT = plot(RelativeTrendIndex, 'Relative Trend Index (RTI)', color=color.new(color.teal, 0)) plot(MA_RelativeTrendIndex, 'Ma Relative Trend Index', color=color.new(#00bcd4, 0)) //~~~~~~~~~~~~~~~~~~~~~~~} // Line plots { mid = hline(50, 'Mid', color=#606060, linestyle=hline.style_dashed) overbought = hline(ob, 'Overbought', color=#606060, linestyle=hline.style_dashed) oversold = hline(os, 'Oversold', color=#606060, linestyle=hline.style_dashed) //~~~~~~~~~~~~~~~~~~~~~~~} // BG Fill { fill(overbought, oversold, color=color.new(color.teal, 90), title='Background') //~~~~~~~~~~~~~~~~~~~~~~~} // Overbought/Oversold Gradient Fill { midLinePlot = plot(50, color = na, editable = false, display = display.none) fill(RT, midLinePlot, 100, ob, top_color = color.new(color.green, 0), bottom_color = color.new(color.green, 100), title = "Overbought Gradient Fill") fill(RT, midLinePlot, os, 0, top_color = color.new(color.red, 100), bottom_color = color.new(color.red, 0), title = "Oversold Gradient Fill") //~~~~~~~~~~~~~~~~~~~~~~~} //Alerts { RT_OB_Over = ta.crossover(RelativeTrendIndex,ob) RT_OB_Under = ta.crossunder(RelativeTrendIndex,ob) RT_OS_Over = ta.crossover(RelativeTrendIndex,os) RT_OS_Under = ta.crossunder(RelativeTrendIndex,os) RT_Mid_Over = ta.crossover(RelativeTrendIndex,50) RT_Mid_Under = ta.crossunder(RelativeTrendIndex,50) RT_MA_Over = ta.crossover(RelativeTrendIndex,MA_RelativeTrendIndex) RT_MA_Under = ta.crossunder(RelativeTrendIndex,MA_RelativeTrendIndex) alertcondition(RT_OB_Over, title = "RTI Crossover OB", message = "RTI Crossover OB") alertcondition(RT_OB_Under, title = "RTI Crossunder OB", message = "RTI Crossunder OB") alertcondition(RT_OS_Over, title = "RTI Crossover OS", message = "RTI Crossover OS") alertcondition(RT_OS_Under, title = "RTI Crossunder OS", message = "RTI Crossunder OS") alertcondition(RT_Mid_Over, title = "RTI Crossover 50", message = "RTI Crossover 50") alertcondition(RT_Mid_Under,title = "RTI Crossunder 50", message = "RTI Crossunder 50") alertcondition(RT_MA_Over, title = "RTI Crossover Ma", message = "RTI Crossover Ma") alertcondition(RT_MA_Under, title = "RTI Crossunder Ma", message = "RTI Crossunder Ma")