답변완료
지표구현문의드립니다
죄송합니다 제가 이름을 착각했었네요..
아래 코드는 트레이딩뷰에 있는 지표중에 Relative Trend Index 라는 지표의 코드입니다. 혹시 예스트레이더로 지표의 구현이 가능할까요?
// This work is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/
// ? Zeiierman
//@version=5
indicator('Relative Trend Index (RTI) by Zeiierman', shorttitle= "RTI", overlay=false, precision=0)
// Inputs {
trend_data_count = input.int(100, step=4, minval=10, title="Trend Length", inline = "RT", group="Relative Trend Index [RTI]", tooltip="This variable determines the number of data points used in the calculation.
In short: A high value returns the long-term trend and a low value returns the short-term trend.
If a user increases the 'Trend Length', the trend will take into account a larger number of data points. This makes the trends smoother and more resistant to sudden changes in the market, as they're based on a broader set of data. It also makes the trends slower to react to recent changes, as they're diluted by older data.
On the other hand, if a user decreases the 'Trend Length', the trend will take into account fewer data points. This could make the trends more responsive to recent market changes, as they're based on a narrower set of data. It also makes the trends more susceptible to noise and rapid fluctuations, as each new piece of data has a greater impact.")
trend_sensitivity_percentage = input.int(95, step=1,minval=50, maxval=98,title='Sensitivity????', inline = "RT1", group="Relative Trend Index [RTI]", tooltip="This variable determines the specific indices in the sorted trend arrays that are used for the upper and lower trend. It's used as a percentage of the 'Trend length'.
If a user increases the 'Sensitivity', the trend will be based on higher and lower positions in the sorted arrays, respectively. This makes the trend less sensitive.
Conversely, if a user decreases the 'Sensitivity', the trend will be based on positions closer to the middle of the sorted arrays. This makes the trend more sensitive.")
signal_length = input.int(20, step=1,minval=1, maxval=200,title='Signal Length', inline = "", group="Signal Line", tooltip="Set the Ma period.")
ob = input.float(80, step=1, minval=0, maxval=100, title="", inline = "obos", group="Overbought/Oversold", tooltip="")
os = input.float(20,step=1, minval=0, maxval=100,title="", inline = "obos", group="Overbought/Oversold", tooltip="Set the OB/OS levels.")
//~~~~~~~~~~~~~~~~~~~~~~~}
// Relative Trend Index Calculation {
upper_trend = close + ta.stdev(close, 2)
lower_trend = close - ta.stdev(close, 2)
upper_array = array.new(0)
lower_array = array.new(0)
for i = 0 to trend_data_count - 1
upper_array.push(upper_trend[i])
lower_array.push(lower_trend[i])
upper_array.sort()
lower_array.sort()
upper_index = math.round(trend_sensitivity_percentage / 100 * trend_data_count) - 1
lower_index = math.round((100 - trend_sensitivity_percentage) / 100 * trend_data_count) - 1
UpperTrend = upper_array.get(upper_index)
LowerTrend = lower_array.get(lower_index)
RelativeTrendIndex = ((close - LowerTrend) / (UpperTrend - LowerTrend))*100
//~~~~~~~~~~~~~~~~~~~~~~~}
// Plots {
MA_RelativeTrendIndex = ta.ema(RelativeTrendIndex,signal_length)
RT = plot(RelativeTrendIndex, 'Relative Trend Index (RTI)', color=color.new(color.teal, 0))
plot(MA_RelativeTrendIndex, 'Ma Relative Trend Index', color=color.new(#00bcd4, 0))
//~~~~~~~~~~~~~~~~~~~~~~~}
// Line plots {
mid = hline(50, 'Mid', color=#606060, linestyle=hline.style_dashed)
overbought = hline(ob, 'Overbought', color=#606060, linestyle=hline.style_dashed)
oversold = hline(os, 'Oversold', color=#606060, linestyle=hline.style_dashed)
//~~~~~~~~~~~~~~~~~~~~~~~}
// BG Fill {
fill(overbought, oversold, color=color.new(color.teal, 90), title='Background')
//~~~~~~~~~~~~~~~~~~~~~~~}
// Overbought/Oversold Gradient Fill {
midLinePlot = plot(50, color = na, editable = false, display = display.none)
fill(RT, midLinePlot, 100, ob, top_color = color.new(color.green, 0), bottom_color = color.new(color.green, 100), title = "Overbought Gradient Fill")
fill(RT, midLinePlot, os, 0, top_color = color.new(color.red, 100), bottom_color = color.new(color.red, 0), title = "Oversold Gradient Fill")
//~~~~~~~~~~~~~~~~~~~~~~~}
//Alerts {
RT_OB_Over = ta.crossover(RelativeTrendIndex,ob)
RT_OB_Under = ta.crossunder(RelativeTrendIndex,ob)
RT_OS_Over = ta.crossover(RelativeTrendIndex,os)
RT_OS_Under = ta.crossunder(RelativeTrendIndex,os)
RT_Mid_Over = ta.crossover(RelativeTrendIndex,50)
RT_Mid_Under = ta.crossunder(RelativeTrendIndex,50)
RT_MA_Over = ta.crossover(RelativeTrendIndex,MA_RelativeTrendIndex)
RT_MA_Under = ta.crossunder(RelativeTrendIndex,MA_RelativeTrendIndex)
alertcondition(RT_OB_Over, title = "RTI Crossover OB", message = "RTI Crossover OB")
alertcondition(RT_OB_Under, title = "RTI Crossunder OB", message = "RTI Crossunder OB")
alertcondition(RT_OS_Over, title = "RTI Crossover OS", message = "RTI Crossover OS")
alertcondition(RT_OS_Under, title = "RTI Crossunder OS", message = "RTI Crossunder OS")
alertcondition(RT_Mid_Over, title = "RTI Crossover 50", message = "RTI Crossover 50")
alertcondition(RT_Mid_Under,title = "RTI Crossunder 50", message = "RTI Crossunder 50")
alertcondition(RT_MA_Over, title = "RTI Crossover Ma", message = "RTI Crossover Ma")
alertcondition(RT_MA_Under, title = "RTI Crossunder Ma", message = "RTI Crossunder Ma")
2023-09-08
1481
글번호 172259
지표